Percent of Bernie Sanders Vote, 2022 Assembly Districts
I have been experimenting with using R to calculate ADP and socialist votes for various political districts. After doing some reading up, it turns out the fastest and easier way to calculate such things is to use VTD centroids and spatially join them against the new districts.
With R, it turns out that can be done with like 10 lines of code to make some pretty nice maps and data, although I did the final map layout in QGIS. Overall, with the enacted Assembly districts, 1/3rd of them voted for Bernie Sanders, mostly upstate. This code took less then 10 seconds to run on my old laptop.
library(tidyverse)
library(tigris)
library(sf)vt20 <- read_csv('2020vote_vtd.csv')
vt20$GEOID <- as.character(vt20$GEOID)vtd <- voting_districts('ny', cb=T) %>%
inner_join(vt20, by=c('GEOID20'='GEOID')) %>%
st_transform('epsg:3857')a22 <- read_sf('/home/andy/Documents/GIS.Data/2022 Districts/NY Assembly 2022.gpkg') %>% st_transform('epsg:3857')
join <- vtd %>% st_centroid() %>%
st_join(a22)join %>% st_drop_geometry() %>%
group_by(DISTRICT) %>%
summarise(socialist = (sum(SANDERS)/sum(SANDERS,CLINTON))*100) %>%
inner_join(a22, by=c('DISTRICT')) %>%
write_sf('/tmp/socialassm.gpkg')
2022 AD | Sanders Vote |
1 | 42.8 |
2 | 47.1 |
3 | 50.4 |
4 | 47.5 |
5 | 53.1 |
6 | 37.6 |
7 | 50.2 |
8 | 46.2 |
9 | 48.6 |
10 | 37.5 |
11 | 39.2 |
12 | 44.7 |
13 | 37.6 |
14 | 42.1 |
15 | 38.4 |
16 | 32.0 |
17 | 45.7 |
18 | 28.6 |
19 | 44.9 |
20 | 39.0 |
21 | 38.3 |
22 | 35.4 |
23 | 41.9 |
24 | 35.2 |
25 | 41.8 |
26 | 40.6 |
27 | 41.0 |
28 | 43.5 |
29 | 25.9 |
30 | 47.1 |
31 | 27.6 |
32 | 25.7 |
33 | 28.7 |
34 | 47.1 |
35 | 32.3 |
36 | 49.5 |
37 | 50.1 |
38 | 45.3 |
39 | 41.3 |
40 | 38.6 |
41 | 37.3 |
42 | 35.6 |
43 | 35.6 |
44 | 45.9 |
45 | 47.6 |
46 | 48.0 |
47 | 51.9 |
48 | 40.7 |
49 | 51.9 |
50 | 57.1 |
51 | 48.5 |
52 | 37.7 |
53 | 50.3 |
54 | 37.3 |
55 | 30.4 |
56 | 42.4 |
57 | 44.5 |
58 | 22.3 |
59 | 32.9 |
60 | 27.0 |
61 | 39.2 |
62 | 53.6 |
63 | 46.0 |
64 | 52.4 |
65 | 40.9 |
66 | 35.7 |
67 | 27.1 |
68 | 35.9 |
69 | 33.6 |
70 | 38.4 |
71 | 39.4 |
72 | 35.7 |
73 | 23.4 |
74 | 37.6 |
75 | 31.9 |
76 | 28.8 |
77 | 26.7 |
78 | 32.3 |
79 | 28.6 |
80 | 35.4 |
81 | 37.0 |
82 | 34.0 |
83 | 23.0 |
84 | 30.5 |
85 | 27.8 |
86 | 26.8 |
87 | 31.3 |
88 | 28.9 |
89 | 30.0 |
90 | 36.5 |
91 | 31.0 |
92 | 33.2 |
93 | 32.2 |
94 | 45.7 |
95 | 40.6 |
96 | 40.7 |
97 | 36.0 |
98 | 47.1 |
99 | 49.6 |
100 | 49.3 |
101 | 56.0 |
102 | 60.2 |
103 | 62.3 |
104 | 47.9 |
105 | 50.3 |
106 | 52.8 |
107 | 55.5 |
108 | 55.9 |
109 | 52.6 |
110 | 49.1 |
111 | 55.2 |
112 | 54.0 |
113 | 57.9 |
114 | 64.0 |
115 | 71.4 |
116 | 54.2 |
117 | 58.4 |
118 | 58.1 |
119 | 51.9 |
120 | 55.7 |
121 | 58.2 |
122 | 56.9 |
123 | 57.3 |
124 | 53.8 |
125 | 61.8 |
126 | 48.9 |
127 | 46.6 |
128 | 42.5 |
129 | 50.8 |
130 | 52.9 |
131 | 52.5 |
132 | 57.2 |
133 | 57.4 |
134 | 50.1 |
135 | 46.0 |
136 | 47.9 |
137 | 40.2 |
138 | 53.8 |
139 | 55.2 |
140 | 53.6 |
141 | 33.6 |
142 | 54.7 |
143 | 50.4 |
144 | 55.1 |
145 | 51.3 |
146 | 46.5 |
147 | 58.3 |
148 | 58.2 |
149 | 54.2 |
150 | 53.5 |