Transportation

Boring Roads

I have to admit driving in New York is downright boring compared to West Virginia. The roads are so flat, so straight, and so wide.

But then again, New York’s mountains have wide valleys, and it’s rare that a road has to traverse a narrow canyon or do any kind of significant climbing. Few major highways climb over mountains in New York.

County Route 47 in Catskills near Winnisook Lake at 2,680 elevation is the highest elevation all season highway in New York. There aren’t a lot of high elevation roads in New York for sure. The highest Interstate in New York is Southern Tier Expressway in Almond at 2,110 elevation

Most Popular Makes of Auto in NY State

This shows the percentage of automobiles registered by the ten most popular makes of automobile in New York State. Chevrolet is by far the most popular in the state, although foreigns are more popular downstate.

Make CHEVR FORD TOYOT HONDA JEEP NISSA SUBAR DODGE GMC HYUND
County
ALBANY 11.3 11.1 10.1 12.7 4.3 5.6 5.3 2.7 2.0 3.1
ALLEGANY 20.4 17.8 5.5 3.4 5.5 3.4 3.0 7.6 5.4 1.4
BRONX 5.0 7.1 17.0 17.9 4.3 8.4 2.3 2.4 1.2 3.9
BROOME 14.1 10.7 15.1 8.7 3.8 5.8 4.3 3.6 3.1 4.6
CATTARAUGUS 20.4 16.5 6.4 3.6 6.3 3.0 3.3 6.1 5.5 1.7
CAYUGA 21.6 13.1 7.6 6.9 5.4 4.9 4.6 4.3 3.7 1.9
CHAUTAUQUA 17.8 17.0 7.6 6.0 5.9 3.6 4.9 5.6 3.4 2.6
CHEMUNG 15.3 13.1 8.9 6.8 4.6 9.5 4.0 5.1 4.2 3.8
CHENANGO 18.2 16.7 7.6 5.3 5.3 4.0 6.2 5.3 4.5 2.6
CLINTON 13.7 14.9 9.1 8.3 4.6 4.2 5.1 3.8 4.6 4.7
COLUMBIA 12.1 12.3 14.0 7.9 4.4 3.7 8.0 3.3 3.7 2.2
CORTLAND 19.3 13.8 6.5 5.5 5.2 6.5 6.5 4.9 3.3 2.7
DELAWARE 15.9 13.0 8.5 6.8 5.4 4.4 7.0 5.2 4.6 2.6
DUTCHESS 9.4 9.4 10.2 13.9 4.8 5.4 7.7 2.8 2.3 4.0
ERIE 17.4 14.5 9.1 6.4 6.1 4.2 4.1 3.3 3.1 3.1
ESSEX 15.5 15.9 9.3 6.5 5.8 3.0 6.2 4.0 4.3 2.2
FRANKLIN 17.2 16.5 7.5 5.3 5.0 2.6 4.8 5.1 5.8 2.6
FULTON 18.1 14.3 8.5 6.4 5.9 6.5 3.0 5.1 2.8 2.1
GENESEE 24.5 13.5 8.9 4.2 5.3 2.7 2.6 4.9 4.4 1.7
GREENE 14.0 13.6 7.4 7.1 4.9 3.9 8.8 3.7 4.8 2.7
HAMILTON 15.6 13.7 10.9 6.4 5.4 3.2 5.3 3.7 4.5 1.9
HERKIMER 16.9 15.0 7.6 7.0 5.4 4.0 4.5 4.4 3.8 2.7
JEFFERSON 14.2 16.5 8.4 7.2 5.8 3.6 3.9 5.1 3.2 2.5
KINGS 4.1 6.5 16.3 14.2 3.6 9.1 3.0 1.8 1.1 3.6
LEWIS 16.4 20.9 5.8 8.6 5.1 2.2 2.9 4.8 4.9 1.5
LIVINGSTON 21.0 15.7 7.2 6.2 5.6 3.1 3.7 5.5 3.7 2.0
MADISON 17.9 13.6 9.3 5.3 5.7 3.1 5.3 4.6 3.9 2.2
MONROE 16.6 10.2 10.5 10.3 4.3 5.7 4.7 2.8 3.1 3.2
MONTGOMERY 17.4 14.4 6.9 8.9 5.9 5.6 3.2 4.8 3.1 2.5
NASSAU 6.2 7.6 11.4 12.3 6.3 7.7 3.3 2.1 1.8 4.2
NEW YORK 3.9 7.4 11.9 11.3 4.3 4.6 4.1 1.6 1.0 2.3
NIAGARA 23.7 13.7 7.0 5.2 5.8 3.4 2.2 4.0 4.3 2.4
ONEIDA 13.5 13.3 10.1 8.4 5.2 4.7 4.8 3.6 3.8 2.9
ONONDAGA 14.9 10.1 10.3 8.0 5.9 4.8 6.0 3.6 2.5 3.2
ONTARIO 16.2 14.1 9.7 7.7 4.7 4.0 5.5 3.4 3.7 3.2
ORANGE 8.5 10.8 12.1 12.3 5.3 6.2 5.2 3.2 2.0 4.7
ORLEANS 27.5 15.5 5.3 4.6 4.7 2.4 2.4 5.3 5.2 1.7
OSWEGO 21.4 13.9 5.8 4.3 6.5 4.3 3.6 5.2 3.2 2.0
OTSEGO 13.9 14.6 9.6 8.9 4.9 5.2 7.2 4.9 3.7 2.5
OUT-OF-STATE 15.7 17.8 8.7 2.0 3.8 10.2 2.3 3.1 2.1 4.0
PUTNAM 8.4 8.6 10.1 13.9 5.9 4.2 9.3 2.5 2.5 3.9
QUEENS 4.8 7.3 16.6 15.0 4.1 9.8 2.7 1.9 1.2 3.7
RENSSELAER 12.9 12.5 9.2 12.0 4.9 5.1 6.0 3.0 2.9 2.9
RICHMOND 5.5 8.1 11.5 12.0 5.7 9.5 2.6 2.2 1.8 5.8
ROCKLAND 5.0 8.8 16.3 15.9 4.5 6.3 5.5 1.7 1.3 4.2
SARATOGA 10.2 11.0 11.1 13.8 5.0 4.9 5.4 2.6 2.8 3.0
SCHENECTADY 10.5 10.4 9.7 14.8 4.6 6.2 4.8 2.9 2.7 3.5
SCHOHARIE 16.8 13.8 7.1 8.1 5.6 3.8 5.7 4.8 4.2 2.4
SCHUYLER 14.8 15.8 8.1 5.5 5.6 5.6 6.0 6.3 3.6 2.3
SENECA 18.4 17.9 7.4 5.4 4.9 5.2 3.3 5.2 3.1 2.8
ST LAWRENCE 20.5 15.4 8.1 4.8 5.6 2.2 3.9 5.9 4.6 1.5
STEUBEN 17.0 15.4 6.7 4.7 6.1 5.5 4.2 6.6 4.3 2.5
SUFFOLK 8.9 10.3 10.8 11.2 6.9 7.0 3.2 2.9 2.0 4.7
SULLIVAN 11.7 12.6 9.9 7.8 5.9 5.0 5.2 4.6 3.0 4.1
TIOGA 15.3 14.3 10.7 7.6 4.6 5.8 4.8 5.2 4.2 3.1
TOMPKINS 11.5 9.8 14.0 12.1 3.7 5.2 9.1 3.2 2.1 2.8
ULSTER 8.9 10.0 11.1 10.4 5.3 6.2 7.9 3.8 3.1 3.8
WARREN 12.5 12.4 9.8 10.9 5.4 4.0 6.2 3.2 3.2 4.7
WASHINGTON 15.3 14.9 8.3 8.8 5.3 4.0 5.3 4.6 3.6 3.7
WAYNE 21.2 15.1 6.6 6.2 5.0 4.1 3.8 4.5 4.1 2.3
WESTCHESTER 6.0 7.2 11.1 14.7 5.7 5.0 6.5 1.6 1.6 2.9
WYOMING 22.8 17.4 6.2 3.5 6.3 2.4 2.9 5.4 4.1 1.5
YATES 19.3 16.3 7.7 5.1 5.3 3.4 4.7 5.3 4.7 2.3
import pandas as pd
import seaborn as sns

url='/media/hd2/auto/autoreg.csv.zip'
df=pd.read_csv(url)

sf=df[((df['Record Type']=='VEH'))].groupby(['County','Make']).count()['VIN'].unstack().T
sf=(sf/sf.sum()*100).fillna(0).T
tb=sf[ sf.sum().sort_values(ascending=False).index[:10]]
tb

cm =sns.color_palette("Spectral_r", as_cmap=True)
html=tb.style.background_gradient(cmap=cm,axis=1).render()

with open('/tmp/auto.html', 'w') as f:
    f.write(html)