Sign in to confirm you’re not a bot
This helps protect our community. Learn more

Introduction

0:00

1. Show installed versions

0:43

2. Create an example DataFrame

1:20

3. Rename columns

2:22

4. Reverse row order

3:47

5. Reverse column order

4:36

6. Select columns by data type

5:01

7. Convert strings to numbers

5:40

8. Reduce DataFrame size

6:55

9. Build a DataFrame from multiple files (row-wise)

8:15

10. Build a DataFrame from multiple files (column-wise)

10:00

11. Create a DataFrame from the clipboard

10:45

12. Split a DataFrame into two random subsets

11:50

13. Filter a DataFrame by multiple categories

12:57

14. Filter a DataFrame by largest categories

13:52

15. Handle missing values

14:42

16. Split a string into multiple columns

15:57

17. Expand a Series of lists into a DataFrame

16:59

18. Aggregate by multiple functions

17:39

19. Combine the output of an aggregation with a DataFrame

18:41

20. Select a slice of rows and columns

19:56

21. Reshape a MultiIndexed Series

20:52

22. Create a pivot table

22:04

23. Convert continuous data into categorical data

23:01

24. Change display options

23:56

25. Style a DataFrame

24:47

Bonus. Profile a DataFrame

26:14
My top 25 pandas tricks
11KLikes
275,742Views
2019Jul 11
You're about to learn 25 tricks that will help you to work faster, write better pandas code, and impress your friends. These are the BEST tricks I've learned from 5 years of teaching Python's pandas library. Don't miss the BONUS at the end of this video! TRICKS: 0:00 Introduction 0:43 1. Show installed versions 1:20 2. Create an example DataFrame 2:22 3. Rename columns 3:47 4. Reverse row order 4:36 5. Reverse column order 5:01 6. Select columns by data type 5:40 7. Convert strings to numbers 6:55 8. Reduce DataFrame size 8:15 9. Build a DataFrame from multiple files (row-wise) 10:00 10. Build a DataFrame from multiple files (column-wise) 10:45 11. Create a DataFrame from the clipboard 11:50 12. Split a DataFrame into two random subsets 12:57 13. Filter a DataFrame by multiple categories 13:52 14. Filter a DataFrame by largest categories 14:42 15. Handle missing values 15:57 16. Split a string into multiple columns 16:59 17. Expand a Series of lists into a DataFrame 17:39 18. Aggregate by multiple functions 18:41 19. Combine the output of an aggregation with a DataFrame 19:56 20. Select a slice of rows and columns 20:52 21. Reshape a MultiIndexed Series 22:04 22. Create a pivot table 23:01 23. Convert continuous data into categorical data 23:56 24. Change display options 24:47 25. Style a DataFrame 26:14 Bonus. Profile a DataFrame DOWNLOAD the Jupyter notebook: https://github.com/justmarkham/pandas... WATCH my introductory series, Data Analysis with pandas:    • Data analysis in Python with pandas   JOIN the "Data School Insiders" community:   / dataschool   LET'S CONNECT!

Follow along using the transcript.

Data School

255K subscribers